(-18t^2+90t+1800)/(t^2+5*t+100)^2=0

Simple and best practice solution for (-18t^2+90t+1800)/(t^2+5*t+100)^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-18t^2+90t+1800)/(t^2+5*t+100)^2=0 equation:



(-18t^2+90t+1800)/(t^2+5t+100)^2=0
Domain of the equation: (t^2+5t+100)^2!=0
t∈R
We multiply all the terms by the denominator
(-18t^2+90t+1800)=0
We get rid of parentheses
-18t^2+90t+1800=0
a = -18; b = 90; c = +1800;
Δ = b2-4ac
Δ = 902-4·(-18)·1800
Δ = 137700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{137700}=\sqrt{8100*17}=\sqrt{8100}*\sqrt{17}=90\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90\sqrt{17}}{2*-18}=\frac{-90-90\sqrt{17}}{-36} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90\sqrt{17}}{2*-18}=\frac{-90+90\sqrt{17}}{-36} $

See similar equations:

| 291.50/1.8+x/0.80=250 | | 180=2x+10+4x-36+4x-34 | | 5x+7+82=180 | | 4p^2+3=83 | | 4w-4=5w-8 | | 250/1.30+x/0.8=291.50 | | 180=x+28+x-28+x | | 20-6+4w=2-2w | | 12w-4=14w-10 | | -w+2+4w=8-3w | | 180=6x+19+3x-6+5x-15 | | 7w=-(2w-18) | | 3(6-w)-4=3w-4 | | 180=x+12+2x-29+x+5 | | 4w-3=3(3w+4)= | | 180=8x-3+6x+8x+7 | | 6x^2-15x-11=0 | | -2x-5=49 | | x-5=140 | | 59+x+20+x+69+x+29=360 | | 2x+5+3x=0 | | a(0.5a-10)=0 | | ^2x=x-30 | | 2b-5=21-7b | | Y=13000*1.06^x | | 2x2-7x-85=0 | | b2-b-20=0 | | 6^3x=36^x+2 | | (3x-4)^(3/2)-14=13 | | -2x-2.6-4x=-4x+16+1.4 | | x+(x*0.15)=834731 | | x^2+0.44x-4=0 |

Equations solver categories